The Ga-Mn-Ni (Gallium-Manganese-Nickel) System

K. P. Gupta , The Indian Institute of Metals

The Ga-Mn-Ni system has attracted a lot of attention due to shape memory found for a Heusler-type $GaMnNi_2$ alloy that is also ferromagnetic. However, very little work has been done on phase equilibria of the ternary system. The available information on the Ga-Mn-Ni system is reported here.

Binary Systems

The Ga-Mn system [Massalski2] (Fig. 1[†]) has eight intermediate phases, ω (Ga_{4.6}Mn), ϕ (Ga_{3.3}Mn), ι (Ga_{2.3}Mn), η (GaMn_{1.2} (LT)), λ (GaMn_{1.2} (HT)), γ_2 (GaMn_{1.7}), γ_3 (GaMn_{1.4}), and ε_1 (GaMn_{2.5}). Except for the ε_1 phase, which forms congruently from the facecentered cubic (fcc) γ phase at 820 °C, all the other phases $L + \eta \leftrightarrow \phi$ at 520 °C, and $L + \phi \leftrightarrow \omega$ at 410 °C. Several eutectic-type or eutectoid reactions occur in the Ga-Mn system: $L \leftrightarrow (Ga) + \omega$ at ≤ 29.8 °C, $\lambda \leftrightarrow L + \eta$ at 520 °C, $(\delta Mn) \leftrightarrow \lambda + \gamma_3$ at 715 °C, and $\gamma_3 \leftrightarrow \epsilon_1 + (\beta Mn)$ at 620 °C. The (β Mn) phase exists from ~80 to 100 at.% Mn at the higher temperatures, but at or below 727 °C the α Mn phase exists. The γ_3 , γ_2 , and γ phase boundaries are not well determined. γ is the fcc terminal solid solution $(\gamma Mn).$

The Ga-Ni system [1991Nas] (Fig. 2) has eight intermediate phases, β_1 (Ni₃Ga), $\delta'(Ni_5Ga_3)$, $\epsilon(Ni_3Ga_2(HT))$, γ' (Ni₃Ga₂ (LT)), ν (GaNi), θ (Ga₄N₃), β_2 (Ga₃Ni₂), and ρ (Ga₄Ni), of which the ν phase melts congruently at 1220 °C. The β_1 , β_2 , ρ , and (Ga) phases form through peritectic reactions: $\gamma + L \leftrightarrow \beta_1$ at 1212 °C, $L + \nu \leftrightarrow \beta_2$ at 895 °C, $L + \beta_2 \leftrightarrow \rho$ at 363 °C, and $L + \rho \leftrightarrow$ (Ga) at 30.2 °C; the ϵ , δ' , and θ phases form through peritectoid reactions: $\beta_1 + \nu \leftrightarrow \epsilon$ at 949 °C, $\beta_1 + \epsilon \leftrightarrow \delta'$ at 741 °C, and $\nu + \beta_2 \leftrightarrow \theta$ at 542 °C. The $\epsilon \leftrightarrow \gamma'$ phase transformation occurs at ~680 °C. A eutectic reaction $L \leftrightarrow \beta_1 + \nu$ occurs at 1207 °C.

The Mn-Ni system [Massalski2] (Fig. 3) is a single peritectic system with the peritectic reaction $L + (\delta Mn) \leftrightarrow \gamma$ occurring at 1164 °C and has a liquidus/ solidus minimum of 1020 °C occurring at ~38 at.% Ni. The γ Mn and Ni form a continuous solid-solution phase γ . The γ phase transforms to the ν (MnNi (HT)), ξ (Mn₂Ni (HT)), and ζ (MnNi₂ (HT)) phases congruently at 911, 720, and

710 °C, respectively. Several other intermediate phases, ζ' (MnNi₂ (LT)), η_1 (MnNi (MT)), η_2 (MnNi (LT)), γ_1 (MnNi₃), and κ (Mn₃Ni) phases, form through peritectoid reactions: $\gamma + \nu \leftrightarrow \eta_1$ at 775 °C, $\eta_2 + \gamma_1 \leftrightarrow \zeta'$ at 440 °C, $(\alpha Mn) + \gamma \leftrightarrow \gamma_1$ at 520 °C, $(\alpha Mn) + \gamma_1 \leftrightarrow \eta_2$ at 480 °C, and $(\alpha Mn) + \eta_2 \leftrightarrow \kappa$ at 430 °C. Several eutectoid reactions take place: $\nu \leftrightarrow \gamma + \eta_1$ at 675 °C, $\eta_1 \leftrightarrow \xi + \zeta$ at 620 °C, $\zeta \leftrightarrow \xi + \gamma$ at 580 °C, $\xi \leftrightarrow (\alpha Mn) + \gamma$ at 560 °C, $\gamma \leftrightarrow \eta_1 + \zeta$ at 655 °C, $\gamma \leftrightarrow \xi + \eta_1$ at 640 °C, $\gamma \leftrightarrow (\beta Mn) + \xi$ at 615 °C, and $(\beta Mn) \leftrightarrow (\alpha Mn) + \xi$ at 586 °C.

Binary and Ternary Phases

In the three binary systems Ga-Mn, Ga-Ni, and Mn-Ni, 24 intermediate phases form. No ternary intermediate phase has been reported in the Ga-Mn-Ni system except that an ordered GaMnNi₂ phase forms in a certain composition region of the extended v phase region that exists between the GaNi and the MnNi phases. The phases and their structure data are given in Table 1.

Ternary System

The existence of a GaMnNi₂ phase was first reported by [1960Ham], who made exploratory work on Heusler-type (Structurbericht-type $L2_1$ structure) AMnB₂ alloys, where A = Ga, In, or Sb and B = Co, Ni, or Pd. The GaMnNi₂ phase was found both in alloys quenched from 940 °C and in furnace-cooled alloys. Since Ni and Mn have very closely comparable scattering factors the phase was tentatively identified by x-ray diffraction as the AlMnCu₂ type $(L2_1)$ structure. The GaMnNi₂ alloy was found to be ferromagnetic. [1968Web] used a powder neutron diffraction at room temperature and confirmed that the GaMnNi₂ alloy has the $L2_1$ type structure. The alloy, however, showed a transformation at liquid N2 temperature. Further, higher-resolution neutron diffraction work by [1984Web] at room temperature and at liquid He temperature, by both rocking crystal neutron diffraction and optical microscopy, showed that the transformation at low temperature is a martensitic type with $M_s \approx 71$ °C (202 K) and is completely reversible. The diffraction pattern suggested the martensitic phase to be of tetragonal symmetry with lattice parameter a = 0.592 nm, c = 0.5566 nm, and c/a = 0.94. Rocking crystal neutron [1984Web] and x-ray [1990Zas] diffraction patterns showed major diffraction peaks with weak diffraction peaks. It was deduced from the weak diffraction peaks that they arise due to periodic displacement of (110) planes along the $[1\overline{1}0]$ direction, the

K. P. Gupta, The Indian Institute of Metals, Calcutta, India; Contact e-mail: iiom@cal2.vsnl.net.in

[†]Note, that the diagram in Fig. 1 shows no two phase region between the single-phase region of the γ , γ_2 , and γ_3 region. This implies higher order transitions. However, available data is not conclusive at this point.

Fig. 1 Binary Ga-Mn system [Massalski2]

Fig. 2 Binary Ga-Ni system [1991Nas]

periodicity being ~5. Using electron diffraction patterns [1999Wed] confirmed the periodicity to be 5, but on quenching the specimen to below 173 K (-100 °C) the periodicity increased to 7, and on warming the specimen the periodicity reverted back to 5. The low-temperature

crystal structure of the martensite was found to be of tetragonal structure, but unlike [1984Web] the lattice parameter was found to be a = 0.3877 nm, c = 0.6489 nm, a superstructure cell based on AuCu-type cell with doubled *c* axis.

Fig. 3 Binary Mn-Ni system [Massalski2]

Compression testing of GaMnNi₂ single crystals along the $\langle 100 \rangle$ direction induced a martensitic transformation in the crystals [1990Zas], and the stress required to initiate martensitic transformation was found to increase linearly with temperature. The modulus of elasticity of the initial state of a GaMnNi2 alloy was found to be $E_{(100)} = (5 \pm 2) \times 10^9$ GPa. Heat capacity of a GaMnNi₂ alloy measured with a differential scanning calorimeter showed two thermal effects, one at ~280 K (~3 °C) that is related to the phase transformation and a λ -type thermal effect related to ferromagnetic to paramagnetic transformation; the Curie temperature T_C was ~370 K (97 °C). The entropy change ΔS due to the phase transformation was estimated to be 3.1 J/mol·K. [1996Che] used hydrostatic pressure to initiate martensitic transformation in GaMnNi₂ single crystal and observed a linear increase in martensite start temperature M_s with pressure up to ~1.2 GPa (Fig. 4).

The variation of physical properties and structural transformation temperature with composition of the v phase around the GaMnNi₂ alloy composition was studied in a limited way by [1997Wir] and somewhat more extensively by [1995Che]. [1995Che] used alloys in the composition region of 25-30 at.% Ga, 20-30 at.% Mn, and 45-55 at.% Ni and determined M_s, thermal hysteresis of transformation (ΔT) , transformation heat (*Q*), and Curie temperature (*T_C*). For these alloys ΔT varied from ~7 ° to ~30 °C, *Q* varied from 1.3 to 11.0 J/g, *T_C* varied from 308 ° to 387 K (35-114 °C), but M_s was found to vary over wide temperature range, from <4.2 to 626 K (< -269 ° to 353 °C). The variation of M_s as a function of Ga and Mn content at approximately constant third-element content of the alloys is

given in Fig. 5, and the following conclusions have been drawn:

- At constant value of Mn content, Ga addition lowers M_s.
- Mn additions (instead of Ga) at constant Ni causes M_s to rise.
- Substitution of Ni by Mn at constant Ga content lowers $M_{\rm s}$.

No reason for the wide variation of M_s with composition has been given.

Very little work has been done to establish phase equilibria in the Ga-Mn-Ni system. Both GaNi and MnNi phases have the same crystal structure (CsCl (B2) type), and they are expected to form at some elevated temperature a continuous phase region v from which the GaMnNi₂ typeordered phase $(L2_1$ -type) should form at a lower temperature. Since both B2-type and $L2_1$ -type structures are related to the disordered body-centered cubic (bcc) structure (A2 type), [1999Ove] determined experimentally the chemical order transition $B2' \rightarrow L2_1$ and theoretically investigated the $A2 \rightarrow B2' \rightarrow L2_1$ -type ordering reaction^{*} using the Bragg-Williams-Gorsky (BWG) model for the Ga_{50-x}Mn_xNi₅₀ alloys with $15 \le x \le 35$. Trial experiments with a $Ga_{25}Mn_{25}Ni_{50}$ alloy showed that the $L2_1$ ordering reaction cannot be arrested by quenching the alloy from high temperature. Hence, in situ neutron diffraction measurements and differential thermal analysis (DTA) of the $Ga_{50-x}Mn_xNi_{50}$ alloys were carried out by [1999Ove]. Arc melted alloys were prepared using very high purity

^{*}This transformation sequence was used by [1996Cor].

Phase designation	Composition (a)	Pearson's symbol	Space group	Туре	Lattice parameter, nm		
					a	b	с
γ	(Ni), $(\gamma Mn), (\gamma Mn, Ni)$	cF4	Fm3m	Cu			
α	(aMn)	<i>cI</i> 58	$I\bar{4} \ 3m$	αMn			
β	(βMn)	cP20	P4132	βMn			
δ	(δMn)	cI2	Im3m	W			
Ga	(Ga)	oC8	Cmca	α Ga			
ε ₁	GaMn _{2.5}						
γ_2	GaMn _{1.7} (HT)	<i>tI</i> 8	I4/mmm	Al ₃ Ti	0.3901		0.7120
γ ₃	GaMn _{1.4} (55-63 Mn)	tP4	P4/mmm	AuCu	0.3898		0.3586
λ	GaMn _{1.2} (HT) (39.5-55 Mn)	hR26	R3m	Cr ₅ Al ₈	$\begin{array}{l} 0.898\\ \alpha = 88.3^{\circ} \end{array}$		
η	GaMn _{1.2} (LT) (40-50 Mn)						
1	Ga _{2 3} Mn	<i>tP</i> 14	P4/mbm		0.8803		0.2694
φ	Ga _{3 3} Mn	<i>cI</i> 10	<i>I</i> 432	Hg4Pt	0.5591		
ώ	Ga _{4 6} Mn	oC28	Cmcm	Al ₆ Mn	0.8974	0.8842	0.9940
β1	GaNi ₃	cP4	$Pm\overline{3}m$	AuCu ₃	0.35850		
δ΄	Ga ₃ Ni ₅	oC16	Cmmm	Ga ₃ Pt ₅	0.376		0.339
3	Ga ₂ Ni ₃ (HT)	hP4	$P6_3/mmc$	AsNi	0.3995		0.498
γ'	Ga ₂ Ni ₃ (LT)				1.3785 $\beta = 35.913$	0.7883 °	0.8457
ν	GaNi	cP2	$Pm\bar{3}m$	CsCl	0.2873		
θ	Ga₄Ni ₃	<i>cI</i> 112	Ia3d	Ga4Ni3	1.141		
β ₂	Ga ₃ Ni ₂	hP6	P3m1	Al ₃ Ni ₂	0.405		0.489
ρ	Ga₄Ni	<i>cI</i> 52	I43m	Cu ₅ Zn ₈	0.8406		
γ1	MnNi 3	cP4	$Pm\bar{3}m$	AuCu ₃	0.3598		
ς	$MnNi_2$ (HT)						
ς′	$MnNi_2$ (LT)						
v	MnNi (HT)	cP2	$Pm\overline{3}m$	CsCl	0.29743		
η_1	MnNi (MT)	tP4	P4/mmm	AuCu	0.37218		0.35295
η ₂	MnNi (LT)						
ξ	Mn ₂ Ni						
κ	Mn ₃ Ni						
v′	GaMnNi ₂		Fm3m	AlMnCu ₂	0.5825		
v' (M)	Martensite (b)		P4/mmm	AuCu	0.592		0.556
v" (M)	Martensite (c)		I4/mmm	Al ₃ Ti	0.418	•••	0.556 (d)

Table 1 Phases of the Ga-Mn-Ni system and their structure data

(a) (HT), (MT), and (LT) represent high temperature, medium temperature, and low temperature, respectively. (b) From CsCl-type structure. (c) From $GaMnNi_2$ structure. (d) *c* parameter given here is c/2 of superstructure cell

Fig. 4 Variation of M_s temperature of GaMnNi₂ single crystal as a function of hydrostatic pressure *P* [1996Che]

component elements. DTA traces were taken during heating and cooling of samples in the temperature range of 100-1000 °C. For in situ neutron diffraction, carried out using a water-cooled furnace going up to 1000 °C, the specimens were heated to 850 °C to disorder them and cooled to the required temperature, equilibrated for 1 h, and diffraction patterns were recorded. DTA traces indicated two thermal effects, the first one, a very small one, due to the $B2' \rightarrow L2$, transformation and the second one, a large one due to $B2' \rightarrow$ liquid transformation. The experimental results are given in Fig. 6. No $A2 \rightarrow B2'$ transformation could be detected by DTA. Neutron diffraction experiments indicated the evolution of $L2_1$ -type structure as temperature was decreased. The intensity of diffraction peaks in the diffraction patterns were used to estimate the order parameters and

Fig. 5 Evolution of M_s temperature of Ga-Mn-Ni v phase alloys as a function of Ga (1) and Mn (2) and (3) at approximately constant value of the third element [1995Che]

used in the BWG model to estimate the theoretical $A2 \rightarrow B2'$ and $B2' \rightarrow L2_1$, transition temperatures as a function of composition. These transition temperatures are also indicated in Fig. 6. The results indicate that the alloys melt before the $A2 \rightarrow B2'$ transition temperature can be reached. For the $B2' \rightarrow L2_1$ transformation the experimental and theoretical data agree very well. The results indicate that a pseudobinary exists between the GaNi and the MnNi

Fig. 6 Experimental and theoretical composition-temperature diagram for the GaNi-MnNi quasi-binary system. DTA data for $B2' \rightarrow L2_1$ transformation, melting temperatures of alloys, and the calculated phase boundary (dashed line) using BWG model [1999Ove]

phases with a very flat liquidus temperature over the composition region investigated. Further work should be done at the two ends of the pseudobinary.

Fig. 7 A partial isothermal section of Ga-Mn-Ni system at 1000 degrC [2001Wed]. The alloys in the area 1 produces on quenching martensite of AuCu structure, whereas the alloys in the area 2 produces on quenching martensite with cell parameter a being same as AuCu-type structure but the c parameter is doubled

Fig. 8 A partial isothermal section of Ga-Mn-Ni system at 800 °C [2001Wed]. Dash-dot line indicates probable phase boundary between the v and δ phases

Fig. 9 Lattice parameter of martensite phase for $Ga_{50-x}Mn_xNi_{50}$ alloys with AuCu-type cell disregarding the doubled *c* axis of some of the alloys [2001Wed]

A more detailed investigation of the Ga-Mn-Ni system, up to ~65 at.% Mn, was done by [2001Wed]. The alloys were prepared by using 99.99 mass% Ga and Ni and 99.9 mass% Mn in MgO crucibles, vacuum sealed in silica tubes, and melted at 1200 °C for 2 h, furnace cooled to 1000 ° or 800 °C, kept at these temperatures for 5 h and quenched in ice water. Optical microscopy, x-ray diffraction, and x-ray spectrometry (EPMA) were used to characterize the alloys. A few diffusion couples were also used (heated to 1000 °C for 1 h followed by 7- to 10 days annealing at 1000 °C or 5 to 6 weeks annealing at 800 °C). The diffusion zones were analyzed by x-ray spectroscopy (EPMA). Two partial isothermal sections were established at 1000 °C (Fig. 7) and 800 °C (Fig. 8).

Figure 7 shows the partial isothermal section of Ga-Mn-Ni system at 1000 °C. The single-phase regions found in the isothermal section are the fcc γ phase extending from the Ni corner to 65 at.% Ni and possibly beyond, a small extension (~10 at.% Mn) of the AuCu₃-type β_1 phase and the CsCl-type ν phase was found to extend from the Ga-Ni system to almost the Mn-Ni system. The ν phase is CsCl-type at 1000 °C, but on quenching from high temperatures these alloys undergo martensitic transformation. The alloys in the composition region Ni >50 at.% on quenching give the AuCu-type martensitic phases. For the alloy compositions Ni \leq 50 at.% and Mn<35 at.%, the alloys give the L2₁-type ordering and produce a martensite that is AuCu type but with doubled

Fig. 10 Probable reaction scheme for the Ga-Mn-Ni system involving the liquid phase

c axis. Disregarding this difference between the two martensitic structures, the AuCu-type cell parameters of alloys with 50 at.% Ni are given in Fig. 9. At 800 °C (Fig. 8), the partial isothermal section shows extension of the v phase from the Ga-Ni to the Mn-Ni binary, and additional phases observed are the γ' phase, the β_2 phase, and the δ phase, which is an extension of the (δ Mn) disordered bcc phase from the Ga-Mn binary. The transition region for the v phase and the δ phase was not determined precisely. The phase boundaries close to the Ga-Mn binary were not determined by [2001Wed]. Since at 800 °C there are large numbers of phases that exist in the Ga-Mn system above 50 at.% Mn (the phases that exist in the Ga-Mn systems at 800 °C with Mn content >50 at.% are indicated in Fig. 8), the phase boundaries at the Ga-Mn system are incomplete and

require further investigation. A probable β Mn -phase region at the Mn corner is, however, indicated in Fig. 8.

The phase regions observed in the 1000 and 800 °C isothermal sections—that is, the three-phase regions $\gamma + \beta_1 + \nu$ and $\gamma + \beta_2 + L$ and the existence of a δ -phase region adjacent to the Ga-Mn binary line—can be used to suggest a probable reaction scheme involving the liquid phase (Fig. 10) and a liquidus projection (Fig. 11) for the Ga-Mn-Ni system. The binary reactions β_1 and e_1 at the Ga-Ni binary are expected to give a peritectic-type four-phase reaction $U_1 : L + \beta_1 \leftrightarrow \gamma + \nu$ from which the three-phase equilibrium $\gamma + \beta_1 + \nu$ will be realized (Fig. 10), and the peritectic reaction p_3 at the Ga-Ni binary will give the $L + \lambda + \beta_2$ three-phase equilibrium. Since the phase equilibria at the Ga-Mn side of the Ga-Mn-Ni system has not been well established, the rest of the proposed reaction

Fig. 11 Probable liquidus projection (schematic) for the Ga-Mn-Ni system

Fig. 12 Lattice parameter variation of $GaNi_3$ phase as a function of Mn content [1985Mis]

scheme and the liquidus projection cannot presently be further verified. More detailed investigation of the Ga-Mn-Ni system should be done at the high-Mn side of the ternary system, especially close to the Ga-Mn binary.

Mechanical properties of Ni-base superalloys are enhanced by dispersion of Ni₃Al phase alloyed with other elements; the enhancement of property occurs due to lattice misfit to increase coherency strain between the two phases. [1985Mis] made a systematic study of change in lattice parameters of Ni, Ni₃Al, and Ni₃Ga phases with addition of various third elements. Addition of Mn to Ni₃Ga was found to increase lattice parameter of the Ni₃Ga phase with increase in the Mn content (Fig. 12).

References

- **1960Ham:** F.A. Hames, Ferromagnetic Alloy Phases Near the Compositions Ni₂MnIn, Ni₂MnGa, Co₂MnGa, Pd₂MnSb and PdMnSb, *J. Appl. Phys.*, 1960, **31**(5), p 3705-3715
- **1968Web:** P.J. Webster and R.S. Tebble, *J. Appl. Phys.*, 1968, **39**, p 471 (quoted by [1984Web])
- **1984Web:** P.J. Webster, K.R.A. Ziebeck, S.L. Town, and M.S. Peak, Magnetic Order and Phase Transformation in Ni₂MnGa, *Philos. Mag. B*, 1984, **49**(3), p 295-310 (Crys Structure)
- **1985Mis:** Y. Mishima, S. Ochiai, and T. Suzuki, Lattice Parameters of Ni (γ), Ni₃Al (γ') and Ni₃Ga (γ') Solid Solutions with Additions of Transition and B-subgroup Elements, *Acta Metall.*, 1985, **33**(6), p 1161-1169
- 1990Zas: I.K. Zasimchuk, V.V. Kokorin, V.V. Martynov, A.V. Tkachenko, and V.A. Cherenenko, Crystal Structure of Martensite in Heusler Alloy Ni₂MnGa, *Phys. Met. Metall.*, 1990, 69(6), p 104-108 (Phase Transformation)
- **1991Nas:** P. Nash, *Phase Diagrams of Binary Nickel Alloys*, ASM International, 1991 (Review)
- 1995Che: V.A. Cherenenko, E. Cesari, V.V. Kokorin, and I.N. Vitenko, The Development of New Ferromagnetic Shape Memory Alloys in Ni-Mn-Ga System, *Scr. Met. Mater.*, 1995, 33(8), p 1239-1244 (Physical Properties)
- **1996Che:** V.A. Cherenenko and V.A. L'vov, Thermodynamics of Martensitic Transformation Affected by Hydrostatic Pressure, *Philos. Mag. A*, 1996, **73**(4), p 999-1008
- **1996Cor:** R. McCormack and D. de Fontain, First Principles Study of Multiple Order-disorder Transitions in the Cd₂AgAu Heusler Alloys, *Phys. Rev. B*, 1996, **54**(14), p 9746-9755
- **1997Wir:** S. Wirth, S. Leith-Jasper, A.N. Vasilev, and J.M.D. Coey, Structural and Magnetic Properties of Ni₂MnGa, *J. Magn. Magn. Mater.*, 1997, **167**, p L7-L11

1999Ove: R.W. Overholser, M. Wuttig, and D.D. Neumann, Chemical Ordering in Ni-Mn-Ga Heusler Alloys, *Scr. Mater.*, 1999, **40**(10), p 1095-1102 (Phase Equilibria, #)

1999Wed: B. Wedel, M. Suzuki, Y. Murakami, C. Wedel, J. Suzuki, D. Shindo, and K. Itagaki, Low Temperature Crystal Structure of Ni-Mn-Ga Alloys, *J. Alloys Compds.*, 1999, 290, p 137-143 (Crys Structure)

2001Wed: C. Wedel and K. Itagaki, High Temperature Phase Relations in the Ternary Ga-Mn-Ni System, J. Phase Equilibria, 2001, 22(3), p 324-330 (Phase Equilibria, #)

indicates presence of phase diagram.

Ga-Mn-Ni evaluation contributed by **K.P. Gupta**, The Indian Institute of Metals, Metal House, Plot 13/4, Block AQ, Sector V, Calcutta, India. Literature searched through 1996. Dr. Gupta is the Alloy Phase Diagram Co-Category Program Editor for ternary nickel alloys.